If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10f^2+31f=0
a = 10; b = 31; c = 0;
Δ = b2-4ac
Δ = 312-4·10·0
Δ = 961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{961}=31$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(31)-31}{2*10}=\frac{-62}{20} =-3+1/10 $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(31)+31}{2*10}=\frac{0}{20} =0 $
| 7x+1=2x-28 | | 13x-5=16x-8 | | 4r+-4r=0 | | 3(7n-7)=168 | | 12(2m-3)=6m | | 2d+1+61=90 | | 20(5x+15)=20x-60 | | -4y+2=-2(4y+17 | | 8x+897=837 | | I8x-48=4x | | 4x−5=−8x+7 | | f(1)=1, | | )1+2x-x=x-5+x | | 18+4+2x+5x=33 | | 12x+32=–52x+52 | | 29=4c+5 | | 6(5g+2=30g | | -3(7n-7)=168 | | -2=2(u+2)-5u | | 2d+62=90 | | 125+89+149+y+38=360 | | 48-16=4(x-7) | | 7d=8d-10 | | 8x+4+16x=11 | | (X+4)+2x+43=180 | | 8x-9+14x-9=180 | | 338-3x=x | | 4x-12=5x+15 | | 3x-20-2+6x=-2(4-x) | | 7b=-2+9b | | -9b-9=-10b | | (6x+8)+(3x+39)=90 |